Can 3 wrongs make a right?
Using Test Items to Drive Student Thinking

Sendhil Revuluri, Senior Curriculum Developer
Office of High School Development, UIC
NCTM 2010 Annual Conference, San Diego
What is assessment?

- Voodoo
- Punishment
- The bane of my existence
- A sadistic plot
- A process of reasoning from evidence
- All of the above
- None of the above
My answer, and some other points

- Assessment is a process of reasoning from evidence about student understanding.
- Assessment is an essential part of instruction.
- Teachers can learn from assessment.
- Students can learn from assessment too.
Introductions

- Why are we here?
 - What assessment is for and how to do it well
 - How we as teachers can learn from assessment
 - Using items to spur higher-order student thinking
- Why aren’t we here?
 - Test prep, theory, large-scale or high-stakes tests
- Who are you?
- Who am I?
Let’s get ready

☐ Pick a course you’re teaching…
☐ … pick a topic you’ll teach in that course…
☐ … and write:
 ■ One thing you want students to know
 ■ How they could show you they know it
 ■ Ways in which you think they might go wrong
I: Foundations, in brief

- What is assessment for?
 - ... and, who is assessment for?
- What makes assessment good?
 - ... for what?
- How do we do it well?
 - ... given our context and constraints?
Assessment is part of teaching
Understanding by Design
The assessment triangle

Interpretation

Cognition Observation
The goal for assessment items

Kids get the item right for the right reason, and wrong for the right reason.

The right reason is understanding of the objective.
What’s involved in the process?

- Creating items and assessments
- Understanding the results of assessments
- What we do in the classroom around this

- What about our students?
 - What should they **know** about this process?
 - What are some important **feelings** to reinforce?
 - Could this improve their **math understanding**?
What makes a good item…

☐ … on a classroom test?
☐ … on a large-scale assessment?

☐ In what ways would the answers be the same?
☐ In what ways might they differ? Why?

☐ One helpful criterion: alignment
A rectangle has length 3.7 cm and width 5.4 cm. What is its perimeter?

A. 8.1 cm
B. 9.1 cm
C. 16.2 cm
D. 18.2 cm

A. 18.2 cm
B. 18.2 cm²
C. 19.98 cm
D. 19.98 cm²
Build a multiple-choice item

- Figure out what you’re trying to assess
- Make a task (stem or prompt) and answer it
- What misconceptions most concern you?
- Create distractors based on misconceptions
- Clean up your item and options
- Is it still aligned with the objective?
Building good tests

- Start with good items
- Items, learning goals, and inference
- Using multiple items on a learning goal…
 - at one sitting
 - through time
- Cumulative testing
- Novel learning goals, or asking in a novel way
II: Can teachers learn from tests?

- What can we, as teachers, do with the results?
 - ... on our own?
 - ... with our colleagues?
 - ... with our students?

- Do the results change anything?
 - Instruction?
 - Future assessment?
 - Something else?
You wrote a test. Now what?

- Now that we have good items, how do we as teachers learn from the assessment results?

- All data gets meaning through **comparison**
 - Across domains for one student at one time
 - Across time for one domain for one student
 - Across students for one domain at one time
Grading

- Why do we grade?
- What do we really want to know?
- What do we want students to know?
- Do we need to grade the way we do?
Growth through time: Proficiencies

Geometry – Fall Proficiencies

<table>
<thead>
<tr>
<th>Assessments</th>
<th>Angle Relationships</th>
<th>Area and Perimeter</th>
<th>Similarity</th>
<th>Right Triangle Trigonometry</th>
<th>Volume and Surface Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.23.07</td>
<td>NY</td>
<td>NY</td>
<td>P</td>
<td>NY</td>
<td>P+</td>
</tr>
</tbody>
</table>

P+ means ‘Expert’

P means ‘Proficient’

NY means you are ‘Not Yet’ proficient
More comparison: Item analysis

<table>
<thead>
<tr>
<th>Last</th>
<th>First</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td></td>
<td>91</td>
</tr>
</tbody>
</table>
| 4 | 6 | 6 | 5 | 8 | 12| 5 | | | | | | | | | | | 55 | 60%
| 4 | 6 | 6 | 5 | 10| 12| 5 | 6 | 5 | 5 | 6 | 7 | 0 | 4 | 5 | | | 84 | 92%
| 4 | 6 | 6 | 4 | 8 | 8 | 5 | 7 | 5 | 5 | 6 | 5 | 4 | 2 | 6 | 4 | 3 | 76 | 84%
| 3 | 1 | 5 | 4 | 12| 12| 2 | 7 | 5 | 4 | 6 | 2 | 6 | 4 | 3 | | | 76 | 84%
| 4 | 1 | 5 | 4 | 8 | 12| 4 | 2 | 3 | 4 | 6 | 2 | | | | | | 55 | 60%
| 4 | 6 | 4 | 5 | 10| 12| 4 | 7 | 5 | 4 | 6 | 2 | | | 6 | | 0 | 75 | 82%
| 4 | 4 | 6 | 6 | 10| 7 | 3 | 5 | 5 | 6 | 2 | 3 | | | | | | 68 | 75%
| 4 | 6 | 6 | 6 | 12| 12| 5 | 7 | 5 | 5 | 6 | 6 | 7 | 6 | 5 | 9 | | 101 | 111%
| 4 | 6 | 6 | 5 | 12| 12| 3 | 7 | 5 | 5 | 5 | 4 | 2 | 5 | 0 | 8 | | 84 | 92%
| 4 | 2 | 6 | 6 | 4 | 2 | 4 | 2 | 2 | 4 | 5 | 5 | 6 | 7 | | 4 | 57 | 63%
| 4 | 2 | 6 | 5 | 12| 12| 4 | 3 | 5 | 6 | 2 | 6 | 0 | 2 | | | 69 | 76%
| 4 | 6 | 6 | 5 | 10| 4 | 3 | 8 | 5 | 5 | 6 | 2 | | | 4 | 68 | 75%
| Avg | 98% | 69%| 94%| 83%| 81%| 81%| 75%| 77%| 97%| 85% | 89%| 44%| 38%| 44%| 60%| 12 | 87% |
| SD | 7% | 35%| 11%| 12%| 20%| 30%| 23%| 28%| 12%| 10% | 30%| 33%| 42%| 56%| 40% | | |
Comparisons: the next level

- Increasing the scope of comparisons
 - The power of common goals and/or assessments

- Combining multiple dimensions
 - Action research
 - More distilled learning goals make this easier

- Shifting the load onto students
III: Promoting student thinking

- How can assessment items, and our practices and use of them, promote student thinking?

- What are our ideas?
 - Might think of these as “feel” / “think” / “act”
 - Or, as “before” / “during” / “after” assessment
 - What are some common themes?
Students who have been able to explore why the wrong idea is wrong have a more secure and deeper understanding of why the right idea is right.

— Jonathan F. Osborne
Build foundational MC knowledge

- Grading for *work*, not just for the answer (also a way to give more feedback per minute)
- Build understanding of distractors as *errors linked to misconceptions* (not random choices)
- Build effective test-taking habits (really, this is about *critical reading*)
 - Anticipating options
 - Using the information provided
Students can analyze items

- Explain the errors behind distractors
- Devise distractors and write rationales

Can lead up to writing items, if scaffolded:
- at the end of a unit
- for prior learning topics (review)
- in groups
- for more “procedural” topics
Algebra 2 Test 8 Analysis

<table>
<thead>
<tr>
<th>#</th>
<th>Topic of the problem</th>
<th>Possible</th>
<th>Earned</th>
<th>Journal</th>
<th>Class %</th>
<th>Key Ideas for Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evaluate composition of functions</td>
<td>6</td>
<td></td>
<td></td>
<td>49%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Solve quadratic trigonometric equation</td>
<td>12</td>
<td></td>
<td></td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Identify absolute value function from graph</td>
<td>5</td>
<td></td>
<td></td>
<td>77%</td>
<td></td>
</tr>
</tbody>
</table>

Which problems did the class have the most issues with? Which ones can you help with?

What topics should you review? What should you add to your summaries? What do you expect on the next test?
Assessment and cognitive demand

- Low: Recall, recognition, perform procedure
- Medium: Represent, multi-step, integrate, apply, solve a problem, compare, justify
- High: Plan, analyze, judge, create, abstract, generalize, formulate a problem

(How) does this item make students think?
- What kinds of items can do each?
- What kinds of activities can do each?
The growth mindset (Carol Dweck)

Students [with] a growth mindset… believe their intelligence can be developed over time through their effort and learning… [and] that everyone can learn and become smarter. [It] creates a framework in which students… see effort as a good thing and as a tool for learning and becoming smarter… that setbacks mean that they must… ramp up their effort and look for new study strategies.

Educators need to send a message that intelligence and talent are developed through passion, learning, and persistence… that challenges are fun, effort is satisfying, mistakes are welcome clues, and even failures can put people on the path to success.
Studying: From event to process

- Anticipating test content
- Reworking troublesome items
- The bottom line: Creating agency in students
Other classroom practices

- What methods have you used?
- Sharing challenges and successes
- What are your open questions?
How will this affect your teaching?

☐ What’s one idea you’ve gained or one connection you’ve made?

☐ What’s one thing you’re going to try?

☐ What’s one thing you’ll tell someone about?
Thank you!

- Please email with feedback, corrections, questions, ideas, comments, and resources!
- I’m happy to send you these slides

sendhil@uic.edu
sendhil@gmail.com